Accurate reconstruction of image stimuli from human fMRI based on the decoding model with capsule network architecture
نویسندگان
چکیده
In neuroscience, all kinds of computation models were designed to answer the open question of how sensory stimuli are encoded by neurons and conversely, how sensory stimuli can be decoded from neuronal activities. Especially, functional Magnetic Resonance Imaging (fMRI) studies have made many great achievements with the rapid development of the deep network computation. However, comparing with the goal of decoding orientation, position and object category from activities in visual cortex, accurate reconstruction of image stimuli from human fMRI is a still challenging work. In this paper, the capsule network (CapsNet) architecture based visual reconstruction (CNAVR) method is developed to reconstruct image stimuli. The capsule means containing a group of neurons to perform the better organization of feature structure and representation, inspired by the structure of cortical mini column including several hundred neurons in primates. The high-level capsule features in the CapsNet includes diverse features of image stimuli such as semantic class, orientation, location and so on. We used these features to bridge between human fMRI and image stimuli. We firstly employed the CapsNet to train the nonlinear mapping from image stimuli to high-level capsule features, and from highlevel capsule features to image stimuli again in an end-to-end manner. After estimating the serviceability of each voxel by encoding performance to accomplish the selecting of voxels, we secondly trained the nonlinear mapping from dimension-decreasing fMRI data to high-level capsule features. Finally, we can predict the high-level capsule features with fMRI data, and reconstruct image stimuli with the CapsNet. We evaluated the proposed CNAVR method on the dataset of handwritten digital images, and exceeded about 10% than the accuracy of all existing state-of-the-art methods on the structural similarity index (SSIM).
منابع مشابه
Constraint-free Natural Image Reconstruction from fMRI Signals Based on Convolutional Neural Network
In recent years, research on decoding brain activity based on functional magnetic resonance imaging (fMRI) has made remarkable achievements. However, constraint-free natural image reconstruction from brain activity remains a challenge, as specifying brain activity for all possible images is impractical. The existing research simplified the problem by using semantic prior information or just rec...
متن کاملDesigning a Stochastic Multi-Product Closed Loop Supply Chain Network Considering the Discount and Solving Using the Firefly Algorithm with Decoding Based on Priority
The closed loop supply chain is becoming one of the industry's most important areas of business, due to environmental and business factors. Planning and implementing a closed loop supply chain network provide more profit, customer satisfaction, and a good social image to the company. While most supply chain networks are not equipped with back-up channels, this paper presents a mixed integer non...
متن کاملComputation Optical Flow Using Pipeline Architecture
Accurate estimation of motion from time-varying imagery has been a popular problem in vision studies, This information can be used in segmentation, 3D motion and shape recovery, target tracking, and other problems in scene analysis and interpretation. We have presented a dynamic image model for estimating image motion from image sequences, and have shown how the solution can be obtained from a ...
متن کاملAutomatic segmentation of glioma tumors from BraTS 2018 challenge dataset using a 2D U-Net network
Background: Glioma is the most common primary brain tumor, and early detection of tumors is important in the treatment planning for the patient. The precise segmentation of the tumor and intratumoral areas on the MRI by a radiologist is the first step in the diagnosis, which, in addition to the consuming time, can also receive different diagnoses from different physicians. The aim of this study...
متن کاملDigital surface model extraction with high details using single high resolution satellite image and SRTM global DEM based on deep learning
The digital surface model (DSM) is an important product in the field of photogrammetry and remote sensing and has variety of applications in this field. Existed techniques require more than one image for DSM extraction and in this paper it is tried to investigate and analyze the probability of DSM extraction from a single satellite image. In this regard, an algorithm based on deep convolutional...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1801.00602 شماره
صفحات -
تاریخ انتشار 2018